Para hablar de Numeros Primos resulta sumamente motivador este artículo de la Cigarra y los Números Primos.
Una vez cada diecisiete años
Miles de norteamericanos asisten estos días a uno de los fenómenos más raros y misteriosos del mundo de los insectos: el nacimiento de la cigarra
RUTH CAMPION (3 de mayo)
Cientos de localidades de los estados norteamericanos de Washington, Maryland y Virginia, entre otros, trabajan afanosamente estos días en proteger las bases de los árboles de sus parques y jardines así como las paredes exteriores de sus casas. El motivo no es otro que la aparición –que se produce una vez cada diecisiete años– de billones de cigarras conocidas como ‘cicadas’, unos animales que encierran, además del misterio de su reproducción y ciclo vital, otro misterio ‘matemático’.
El de los números primos. Las cigarras periódicas, muy especialmente la Magicicada septendecim, tienen el ciclo vital más largo de todos los insectos. Su único ciclo vital empieza bajo tierra, donde las ninfas absorben pacientemente el zumo de las raíces de los árboles. Entonces, después de 17 años de esperar, las cigarras adultas emergen de la tierra en gran número e invaden temporalmente nuestro paisaje. Unas semanas después se aparean, ponen los huevos y mueren.
La cuestión que inquietaba a los zoólogos era: ¿Por qué el ciclo vital de la cigarra es tan largo? Qué quiere decir que el ciclo vital sea un número primo de años? Otra especie, la Magicicada tredecim, aparece cada 13 años, lo que indica que los ciclos vitales que son un número primo de años dan algún tipo de ventaja para la conservación de la vida.
Según una teoría, la cigarra tiene un parásito que también recorre un ciclo vital, y que la cigarra está intentando evitar.
Si el parásito tiene un ciclo vital, pongamos, de dos años, entonces la cigarra quiere evitar un ciclo vital que sea divisible por 2, sinó el parásito y la cigarra coincidirán regularmente. De esta manera parecida, si el parásito tiene un ciclo vital de 3 años, entonces la cigarra querrá evitar un ciclo vital divisible por 3, si no el parásito y la cigarra volverán a coincidir. . Al fin, si se quiere evitar de encontrase con su parásito, la mejor estratégia de la cigarra es darse un ciclo de vida largo, que dure un número primo de años. Como nada dividirá el 17, la Magicicada Septendecim raramente se encontrará con su parásito. Si el parásito tiene un ciclo de 2 años, solo se contrarán cada 34 años, y si tiene un ciclo vital más largo, de 16 años p. ej., sólo se encontrarán cada 272 (16 x 17) años.
En su turno, el parásito, si quiere luchar, sólo tiene dos ciclos vitales que incrementan la frecuencia de las coincidencias: el del ciclo anual y el mismo ciclo de 17 años que la cigarra. Ahora bien, es poco probable que el parásito pueda sobrevivir y reaparecer 17 años seguidos, porque durante las 16 primeras apariciones no habrá cigarras a las cuales parasitar. De otro modo, si quieren conseguir el ciclo de 17 años, las generaciones de parásitos tendrán que evolucionar primero durante un ciclo vital de 16 años. Esto significaria que, en algún estadio evolutivo de su vida, el parásito y la cigarra no coincidirán durante 272 años.
En cualquier caso, el largo ciclo vital de las cigarras, y el número primo de años, las protege. ¡Esto podría explicar por qué el supuesto parásito no ha sido encontrado nunca! En la lucha por coincidir con la cigarra, el parásito probablemente ha continuado alargando su ciclo vital, hasta conseguir transpasar la barrera de los 16 años. Entonces dejará de coincidir durante 272 años; mientras tanto su falta de coincidencia con las cigarras le habrá llevado a la extinción. El resultado es una cigarra con un ciclo vital de 17 años; ciclo que ya no le hace ninguna falta porque su parásito ya no existe.
No hay comentarios:
Publicar un comentario